
Bilkent University

Department of Computer Engineering

Senior Design Project

T2322

CleaverWall

Analysis and Requirement Report

21901358, Ali Emre Aydoğmuş,

emre.aydogmus@ug.bilkent.edu.tr

21903472, Arda Barış Örtlek,

baris.ortlek@ug.bilkent.edu.tr

21802925, Onur Korkmaz,

onur.korkmaz@ug.bilkent.edu.tr

21802856, Selahattin Cem Öztürk,

selahattin.ozturk@ug.bilkent.edu.tr

21903227, Yekta Seçkin Satır,

seckin.satir@ug.bilkent.edu.tr

Özcan Öztürk

Erhan Dolak

Tağmaç Topal

13.11.2022

This report is submitted to the Department of Computer Engineering of Bilkent University in partial fulfillment of the

requirements of the Senior Design Project course CS491/2.

mailto:emre.aydogmus@ug.bilkent.edu.tr
mailto:baris.ortlek@ug.bilkent.edu.tr
mailto:onur.korkmaz@ug.bilkent.edu.tr
mailto:selahattin.ozturk@ug.bilkent.edu.tr
mailto:seckin.satir@ug.bilkent.edu.tr

Contents

1 Introduction 4

2 Proposed System 4

2.1 Overview 4

2.2 Functional Requirements 5

2.2.1 User Functionalities 5

2.2.2 System Functionalities 6

2.3 Non-functional Requirements 6

2.2.1 Usability 6

2.2.2 Security and Privacy 6

2.2.3 Reliability 6

2.2.4 Scalability 6

2.2.5 Maintainability 7

2.4 Pseudo Requirements 7

2.5 System Models 7

2.5.1 Scenarios 7

2.5.1.1 Scenarios for Desktop 7

2.5.5.2 Scenarios for Web 9

2.5.2 Use-Case Model 10

2.5.2.1 Use-Case Model for Desktop 10

2.5.2.2 Use-Case Model for Web 11

2.5.3 Object and Class Models 11

2.5.3.1 Object Design of Server Side 11

2.5.3.2 Object Design of Client Sides 12

2.5.4 Dynamic Models 13

2.5.4.1 Sequence Diagram for Web 13

2.5.4.1 Sequence Diagram for Desktop 13

2.5.4.1 Activity Diagram for Web 14

2

2.5.4.1 Activity Diagram for Desktop 15

2.5.5 User Interface 15

2.5.5.1 Mockups for Web Application 15

2.5.5.1.1 Login Page 15

2.5.5.1.2 Sign Up Page 16

2.5.5.1.3 Home Page 16

2.5.5.1.4 Detection Page 17

2.5.5.1.5 Details Page 17

2.5.5.1.6 Behaviour Page 18

2.5.5.1.7 Previous Results Page 18

2.5.5.2 Mockups for Desktop Application 19

2.5.5.2.1 Home Page 19

2.5.5.2.2 Files Page 19

3 Other Analysis Elements 20

3.1 Consideration of Various Factors in Engineering Design 20

3.1.1 Public Health 20

3.1.2 Public Safety 20

3.1.3 Public Welfare 20

3.1.4 Global Factors 21

3.1.5 Cultural Factors 21

3.1.6 Social Factors 21

3.2 Risks and Alternatives 21

3.3 Project Plan 21

3.4 Ensuring Proper Teamwork 26

3.5 Ethics and Professional Responsibilities 26

3.6 Planning for New Knowledge and Learning Strategies 26

4 Glossary 26

5 References 26

3

Analysis and Requirement Report
CleaverWall

1 Introduction

Malware detection is a trending topic since the 1980s and it is becoming more significant
due to the immense increase in malware programs. Even though there is use of different
approaches, most of the open-source anti-malware programs rely upon signature based
methods. CleaverWall optimizes this method commonly used in the industry by developing
an application that totally depends on machine learning to eliminate the disadvantages of
signature based detection methods. The application has three stages, the extraction of
features to put into the model, the classification using a machine learning model, and the
operations after the detection of malware. We are planning to produce two versions of the
products, the first will be a web service and the second will be a Windows application.

The details of CleaverWall, its functional and non-functional requirements, system models
and other analysis elements will be discussed in the rest of this report.

2 Proposed System

2.1 Overview

CleaverWall is an anti-malware mechanism to detect whether a portable executable is
malicious, if so, to classify the malware type. For the classification process, a set of
malware classifiers trained with various machine learning and deep learning techniques will
be used. Static and dynamic analysis will be conducted to create different feature vectors
for the models. Those different classifiers will work collaboratively to decrease the false
positive occurrences.

In static analysis, we have different approaches. The first approach consists of
disassembling a portable executable and collecting information from that .asm file.
Operation codes, registers, symbols, sections, miscellaneous and Windows API calls will be
analyzed to create features [1], [2]. Capstone [3] and pefile [4] modules will be utilized to
form disassemble scripts. Moreover, portable executable headers include valuable
information such as SizeOfCode and AddressOfEntryPoint [5]. We aim to extend our
feature vector by adding new features from PE headers. Feed Forward Neural Network
structure will be used for this model.

The second approach is to represent an executable file as a grayscale image by
interpreting every byte as one pixel in an image, ranging from 0 to 255. This approach
reduces malware classification problem to image classification problem on which
Convolutional Neural Networks are very efficient. Studies show that images of the same
malware family are similar to each other while they are distinct from images of other
families [6], [7], [8].

4

Figure 1: The first row represents Yuner.A samples, the second row represents VB.AT
samples and the third row represents Skintrim.N samples [9].

The third approach is to combine models discussed in the first and the second approach
and form a multimodal malware classifier. Output of 2 different layers fed with different
inputs will be concatenated into a single layer. We observed similar approaches [10], [11]
and decided to implement this specific approach to increase the evaluation score of the
static classification.

In dynamic analysis, a portable executable’s Windows API call sequence will be analyzed to
create the feature vector [12]. For this purpose, an executable will be run on a sandbox for
a small amount of time. After that, the sandbox will return information regarding the API
call sequence. Cuckoo Sandbox [13] and a server where the sandbox can operate will be
utilized. For the model, Feed Forward Neural Network or XGBoots will be selected
depending on their performance.

Dataset for training the models will be taken from VirusShare [14]. Academic API of
VirusTotal [15] will be utilized to label the dataset. Moreover, we aim to enrich our dataset
from the executable files that users upload to the server when using Web Client.

Since CleaverWall is an open source project, we initially do not aim to compete with
premium services. However, open source anti-malwares such as ClamAV and other
applications using only signatures based detection methods perform poorly. Therefore, our
goal is to surpass them on both evaluation and performance metrics due to our machine
learning approach. The innovation type that we want to implement is product performance
and it is incremental. As we improve our application, we want to change the case that
reliability is expensive.

5

2.2 Functional Requirements

2.2.1 User Functionalities

Users can:

● Scan a portable executable file through the desktop or the web app,
● Scan a windows directory,
● Demand further analysis with other heavier machine learning models,
● View the detailed log of scan results,
● Schedule an auto-scan process for a specific file path,
● Determine options such as quarantine or deletion for a scanned portable

executable file which is detected as malicious.
● View previous scan results.

2.2.2 System Functionalities

The server can:

● Accept portable executable files,
● Apply static and dynamic analysis on them,
● Return the results,
● Save the obtained data to a database.

Desktop application can,

● Use models of different weights to scan a portable executable file statically,
● Scan directories,
● When needed, send files to server for further analysis,
● Display the results,
● Quarantine detected malwares & delete them on demand,
● Present a UI.

Web client can:

● Display a UI that accepts portable executable files,
● Display the results,
● Display information about the system.

2.3 Non-functional Requirements

2.2.1 Usability

● Our graphical user interface will be clear and intuitive to increase the ease of
usage.

● We will ensure that the graphical user interface styles of the desktop application
and the web server are similar to each other so that our customers will not have a
hard time when they switch the service that they are using.

2.2.2 Security and Privacy

● We will ensure that the uploaded files will be safe against cyber attacks.
● We will ensure that our classification model can not be disturbed by outside forces.
● Newly obtained and saved data to improve the machine learning model should not

be disturbed by outside forces.

6

2.2.3 Reliability

● We will ensure that our classification model can classify mainstream malware
families.

● By using the new saved data, our classification model should be able to increase its
accuracy.

2.2.4 Scalability

● The server should be able to analyze multiple files that are uploaded by different
users concurrently.

2.2.5 Maintainability

● The mean time to restore the system following a system failure on the server side
must not be greater than 10 minutes. Mean time to restore the system includes all
corrective maintenance time and delay time.

2.4 Pseudo Requirements

● Source code will be controlled through git, on a Github repository.
● The desktop and server-side applications will be written in Python. For the desktop

application, C scripts may be written as needed.
● Cuckoo Sandbox will be utilized.
● Capstone will be used as the disassembler tool.
● Tensorflow [16] framework will be used for machine learning operations.
● The simple web client will be written in Javascript.
● Django framework will be utilized for the backend application.

2.5 System Models

2.5.1 Scenarios

2.5.1.1 Scenarios for Desktop

Scenario 1: Scan an executable

Actors: Desktop User

Entry Conditions: User should be in the scanning section.

Exit Conditions: User does not demand further analysis.

Flow of events:

1. User provides the path of the executable file.
2. User selects the type of analysis and one of the related classifiers.
3. User clicks the scan button.
4. After scanning operations are completed, user sees the result screen.
5. User optionally deletes or quarantines the executable file.
6. User optionally demands further analysis with different classifiers.

7

Scenario 2: Scan a directory

Actors: Desktop User

Entry Conditions: User should be in the scanning section.

Exit Conditions: User does not demand further analysis.

Flow of events:

1. User provides the path of the directory.
2. User selects the type of analysis and one of the related classifiers.
3. User clicks the scan button.
4. After scanning operations are completed, user sees the result screen.
5. User optionally deletes or quarantines executable files that are predicted as

malicious.
6. User optionally demands further analysis with different classifiers.

Scenario 3: Schedule an auto-scan process

Actors: Desktop User

Entry Conditions: User should be in the scheduling section.

Exit Conditions: User navigates to a different application section.

Flow of events:

1. User provides the path of the directory or executable.
2. User selects the type of analysis and one of the related classifiers.
3. User determines the date of the scan operation.
4. User clicks the schedule button.

Scenario 4: Sign Up

Actors: Desktop User

Entry Conditions: User clicks Sign Up button.

Exit Conditions:

● User closes the app.

● Credentials are authorized.

Flow of events:

1. User provides an email address and password.
2. User gets an authentication email.
3. User verifies the account.

8

Scenario 5: Login

Actors: Desktop User

Entry Conditions: User clicks Login button.

Exit Conditions:

● User closes the app.
● Credentials are verified.

Flow of events:

1. User enters his/her email address and password.
2. Credentials are verified.

Scenario 6: View previous scan results

Actors: Desktop User

Entry Conditions: User is logged in and they click the Previous Scans button.

Exit Conditions:

● User closes the app.
● User navigates to a different application section.

Flow of events:

1. User waits for the server request to fetch previous scans.
2. User observes the previous scan results.
3. User may save the list of previous scans.

2.5.5.2 Scenarios for Web

Scenario 1: Scan an executable

Actors: Web User

Entry Conditions: User should be in the home page.

Exit Conditions: User does not demand further analysis.

Flow of events:

1. User uploads the executable file.
2. User selects the type of analysis and one of the related classifiers.
3. User clicks the scan button.
4. After scanning operations are completed, user sees the result screen.
5. User optionally demands further analysis with different classifiers.

9

Scenario 2: Sign Up

Actors: Web User

Entry Conditions: User clicks Sign Up button.

Exit Conditions:

● User closes the app.

● Credentials are authorized.

Flow of events:

1. User provides an email address and password.
2. User gets an authentication email.
3. User verifies the account.

Scenario 3: Login

Actors: Web User

Entry Conditions: User clicks Login button.

Exit Conditions:

● User closes the app.
● Credentials are verified.

Flow of events:

1. User enters his/her email address and password.
2. Credentials are verified.

Scenario 4: View previous scan results

Actors: Web User

Entry Conditions: User is logged in and they click the Previous Results button.

Exit Conditions:

● User closes the app.
● User navigates to a different application section.

Flow of events:

1. User waits for the server request to fetch previous scans.
2. User observes the previous scan results.
3. User may save the list of previous scans.

10

2.5.2 Use-Case Model

2.5.2.1 Use-Case Model for Desktop

Figure 2: Use-Case Diagram for Desktop

2.5.2.2 Use-Case Model for Web

Figure 3: Use-Case Diagram for Web

11

2.5.3 Object and Class Models

2.5.3.1 Object Design of Server Side

Controller classes will present the API endpoints. Business logic will be implemented in the
SubmissionService class. Submission is the only entity to be stored in the database, if the
user authentication is excluded. VirtualMachine manager class is left empty. Supporting
dynamic analysis is a later stage goal of the project and it is quite hard to predict the
requirements for the VM setup as we are still currently working on it

Figure 4: Class Diagram of Server Side

2.5.3.2 Object Design of Client Sides

The Web client application will not follow an object oriented approach. It will consist of a
tree of functions (React Components), and will occasionally use objects from external
libraries in its scripts

The desktop application will follow an Object-Oriented approach mainly for organizing its
functionalities into the graphical user interface (GUI). The main functionality will be
implemented by the scripts invoked by these classes. The diagram below does not provide
further GUI related classes as it is outside the scope of this part of the report, that is given
in section 3.5.5.

12

Figure 5: Class Diagram for Desktop Application

2.5.4 Dynamic Models

2.5.4.1 Sequence Diagram for Web

Figure 6: Sequence Diagram for Web

In this diagram the user uploads an executable file. That uploaded file is analyzed
in the server and the result of the analysis will be displayed in the home page
when it is ready. Also users can view the previous scans.

13

2.5.4.1 Sequence Diagram for Desktop

Figure 7: Sequence Diagram for Desktop

In this diagram the user indicates directory name. That directory will be statically
analyzed first. If a further analysis is needed it will sended to the server and the
result of the analysis will be displayed in the home page when it is ready. Also
users can view the previous scans, dequarantine that scans or quarantine the
newly analyzed files.

14

2.5.4.1 Activity Diagram for Web

Figure 8: Activity Diagram for Website

15

2.5.4.1 Activity Diagram for Desktop

Figure 9: Activity Diagram for Desktop

16

2.5.5 User Interface

2.5.5.1 Mockups for Web Application

2.5.5.1.1 Login Page

This is the page where the user logs in by his email and password.

Figure 10: Login Screen for Web

2.5.5.1.2 Sign Up Page

The user can sign up by specifying an email and password for the account.

Figure 11: Sign-Up Screen for Web

17

2.5.5.1.3 Home Page

This is the page where the user uploads the file which will be examined. Also, the page
redirects the user to download the desktop application or the Github page of the
project.

Figure 12: Home Page for Web

2.5.5.1.4 Detection Page

This page demonstrates the results of the machine learning algorithm. Confidence rates if
the file contains malware from specific classes are displayed.

Figure 13: Detection Page for Web

18

2.5.5.1.5 Details Page

This page contains the properties of the file and details that are used for static analysis
such as data of sections of the portable executable file.

Figure 14: Details Page for Web

2.5.5.1.6 Behaviour Page

This page contains the information obtained from the sandbox such as numbers of API
calls.

Figure 15: Behaviour Page for Web

19

2.5.5.1.7 Previous Results Page

This page shows previously investigated files by an account. The user can click on the
report button to reach Detection, Details and Behaviour pages of the analysis done on a
specified date.

Figure 16: Previous Results Page for Web

2.5.5.2 Mockups for Desktop Application

2.5.5.2.1 Home Page

This is the page managing the operations of malware detection. The user can select a
directory to investigate all the files inside the directory. The page is split into two parts.
One part shows the results of static analysis and the other part shows the results of
dynamic analysis. The users can choose a file to display the details of the information
about the file and the results on the same page. Also, files can be quarantined using

Figure 17: Home Page for Desktop

20

2.5.5.2.2 Files Page

This page manages operations about quarantined files. The user can delete a file, take the
file out of quarantine or display details about the file using this page.

Figure 18: Files Page for Desktop

2.5.5.2.3 Previous Results Page

This page contains information about analyses that are done previously. The page
demonstrates detailed information about static and dynamic analyses done in specified
date by pop-ups.

Figure 19: Previous Results Page for Desktop
21

3 Other Analysis Elements

3.1 Consideration of Various Factors in Engineering Design

3.1.1 Public Health

CleaverWall and public health are not correlated.

3.1.2 Public Safety

Every year, ransomware alone costs the public $20 billion yearly [17]. Although
some of these attacks may not be caught by current signature-based anti-viruses, since
CleaverWall utilizes quick static model responses for malware detection it could prevent
some percentage of these attacks, potentially saving millions of dollars worldwide.

3.1.3 Public Welfare

Governments or agencies are backbones of welfare since they provide items and
services to the public. These entities employ a lot of personnel who are doing civil servant
jobs, who generally sit at a desk and work on computers 8 to 5. Although these people are
expected to use computers very often, they are not always tech savvy and are more likely
to fall for malware scams while browsing the internet. Their time is precious to waste on
such setbacks and they're better off practicing their finesse for easing the bureaucracy or
helping people. CleaverWall is a potential helping hand for these situations by providing a
quick feedback for malicious software and preventing people from falling for potential
scams. Also since it is open-source, these entities could modify CleaverWall for their own
use, resulting in potential widespread use.

3.1.4 Global Factors

Since CleaverWall is open source, its success means that people will dissect and
analyze the project. Although it is currently not popular, a successful project that uses
machine learning only could light new ideas in the analyzers’ heads. Additionally, the file
recognition model could expand outside the malware detection application and find new
uses in other fields.

3.1.5 Cultural Factors

The project could only have a meta effect on the culture, meaning it could affect
the roots it came from: programmers. Although not for scale, the effect could be that of
some algorithms often taught in programming. It could set a common ground for some
certain set of coders, making them form sentences such as “It’s similar to Dijkstra” or “It
would be nice to use a Knapsack here”.

3.1.6 Social Factors

CleaverWall has nothing to do with any social status such as age, gender, ethnicity,
race etc. Therefore social factors are not determining factors for CleaverWall usage. Also it
seems like CleaverWall will not have any effect on society.

22

3.2 Risks and Alternatives

● Both the desktop and the web application might not be implemented before the
deadline. If this case occurs, we will focus on the web application implementation.

● Public datasets for malware samples generally have imbalanced distribution. This
circumstance might cause high false positive rates despite high training accuracy
rates. If this case occurs, we will apply methods such as data augmentation to
overcome data imbalance.

● There is a possibility that an executable file is packed in order to hide the
information in the disassembled version. For now, our static analysis approaches
are vulnerable against it. To detect the packing type and unpack the executable,
we can utilize unpack.py script [18]. However, this script runs the executable while
unpacking it. Therefore, we might have to change the project structure for static
analysis to run this script in a windows virtual machine which is downloaded to our
server.

3.3 Project Plan

Table 1: Factors that can affect analysis and design.

Effect level Effect

Public health 0 The project has nothing to do with
health.

Public safety 4 Static responses of the project are
expected to protect its users from
obvious scams of easy-viruses.

Public welfare 1 Governments or other agencies might
decide to provide the project, or a
version of theirs (since it is open source)
to their civil servant jobs so that some
simple setbacks could be avoided, which
in turn could increase their efficiency.

Global factors 5 The project's success could lead to some
breakthroughs on file recognition using
ML, and even might extend the use
outside of malware detection.

Cultural factors 2 If successful, the project may have an
antsy effect on the programmer culture.

Social factors 0 The project is unlikely to impact the
current era of civilization.

23

Table 2: Risks

Likelihood Effect on the project B Plan Summary

Time

constraint

for

implement

ation

3/10 Risk of not implementing both

web and desktop sides.

We will focus on the web

application.

Dataset

Imbalance

5/10 Risk of high false positive

rates..

We will apply methods such

as data augmentation,

undersampling etc.

Packed

exe file

5/10 Risk of dealing with packed

executable files in static

analysis.

We will use public

unpack.py script to unpack

executables before

disassembling them.

Table 3: List of work packages

WP# Work package title Leader Members involved

WP1 Analysis Onur Korkmaz Everybody

WP2 Design Selahattin Cem

Öztürk

Everybody

WP3 Malware Classifier Development Arda Barış

Örtlek

Arda Barış Örtlek,

Selahattin Cem Öztürk,

Onur Korkmaz

WP4 Server Side Development Yekta Seçkin

Satır

Yekta Seçkin Satır,

Ali Emre Aydoğmuş,

Arda Barış Örtlek

WP5 Client Side Development Ali Emre

Aydoğmuş

Yekta Seçkin Satır,

Ali Emre Aydoğmuş,

Selahattin Cem Öztürk

WP6 Testing Selahattin Cem

Öztürk

Everybody

24

WP 1: Analysis

Start date: August 15, 2022 End date: October 17, 2022

Leader: Onur Korkmaz Members involved: Arda Barış Örtlek

Yekta Seçkin Satır

Ali Emre Aydoğmuş

Selahattin Cem Öztürk

Onur Korkmaz

Objectives: Discuss and determine related specifications and requirements for the project.

Tasks:

Task 1.1 <Constraints> : Determine implementation, economic, sustainability and

resource constraints of the project

Task 1.2 <Requirements> : Determine functional, non-functional and pseudo requirements

of the project.

Task 1.3 <System Modals> : Draw use-case, class and dynamic models, also provide UI

mockups.

Deliverables

D1.1: Project Specification Document

D1.2: Analysis and Requirement Report

WP 2: Design

Start date: November 14,.2022 End date: March 15, 2023

Leader: Selahattin Cem Öztürk Members involved: Arda Barış Örtlek

Yekta Seçkin Satır

Ali Emre Aydoğmuş

Selahattin Cem Öztürk

Onur Korkmaz

Objectives: Evaluating the Analysis and proposing a detailed system design

Tasks:

Task 2.1 Evaluation of the Analysis : Evaluating the analysis part for the design.

Task 2.2 High-Level Design : Dividing the project into subsystems and defining the design

goals of the project

Task 2.3 Low-Level Design : Determining the functional logic of the applications and

giving a detailed description of the system.

Deliverables

D2.1: Design Report

25

WP 3: Malware Classifier Development

Start date: November 14, 2022 End date: May 15, 2023

Leader: Arda Barış Örtlek Members involved: Arda Barış Örtlek

Selahattin Cem Öztürk

Onur Korkmaz

Objectives:

● Create a malware classifier using features from .asm files.

● Create a malware classifier using grayscale image of an executable.

● Create a multimodal classifier combining 2 different static classifiers.

● Create a malware classifier using Windows API sequence.

Tasks:

Task 3.1 Dataset Labeling : Labeling datasets taken from VirusShare by using VirusTotal

Academic API.

Task 3.2 Implementation of Disassembling : Implementing disassemble script by using

Capstone and Pefile.

Task 3.3 Feature Extraction for Static Analysis: Implementing feature extraction script

which can extract features from PE headers and disassembled executables.

Task 3.4 Feature Selection for Static Analysis: Apply chi-squared tests to determine best

features for classification task.

Task 3.5 Extracting Byte Data: Extract byte data for every executable in the dataset and

apply related operations to create grayscale representation.

Task 3.6 Classifier Training for Static Analysis: Train related classifiers and adjust their

hyperparameters to get higher evaluation metrics.

Task 3.7 Feature Extraction for Dynamic Analysis: Extract features from the data

coming from Cuckoo Sandbox.

Task 3.8 Classifier Training for Dynamic Analysis: Train classifiers constructed with

dynamic analysis and adjust related hyperparameters to get higher evaluation metrics.

Deliverables

D3.1: Malware classifiers constructed with static analysis

D3.2: Malware classifier constructed with dynamic analysis

26

WP 4: Server Side Development

Start date: September 22, 2022 End date: May 15, 2023

Leader: Yekta Seçkin Satır Members involved: Yekta Seçkin Satır

Ali Emre Aydoğmuş

Arda Barış Örtlek

Objectives:

● Provide an API that enables client side applications to perform malware analysis

remotely.

● Utilize a virtual environment to perform dynamic analysis on suspected PE files.

● Store the malware data on user’s permission for potential use.

Tasks:

Task 4.1 API Endpoint and Project Structure: Initiate the server side application in a

sustainable structure. Provide endpoints to enable client-side development parallelization.

Task 4.2 Core Functionality Implementation: Handle the queue for requests. Apply static

analysis. Provide classification.

Task 4.3 Database and User operations: Implement the CRUD operations on Submission

entities with user relations. Implement an authentication process. Store the data accurately

for In-app use and to feed to the classifier.

Task 4.4 Utilize the Virtual Environment for Dynamic Analysis: Utilize and run a

Cuckoo Sandbox environment, in a VM. Apply dynamic analysis using the environment.

Perform classification using the classier trained for this purpose.

Deliverables

D4.1: Server application that provides dummy functions

D4.2: Functional server application

D4.3: Server side application with VM

27

WP 5: Client Side Development

Start date: November 14, 2022 End date: May 15, 2023

Leader: Ali Emre Aydoğmuş Members involved: Ali Emre Aydoğmuş

Yekta Seçkin Satır

Selahattin Cem Öztürk

Objectives:

● Provide a clear and efficient UI and UX for the users for both the web and the

desktop interfaces.

● Link the necessary tools for enabling MVP features such as static analysis and

quarantining malicious files to the desktop application.

Tasks:

Task 5.1 Deciding Design Choices: Decide which languages to use for web and desktop

clients respectively and find out what are best practices in order to obtain a high

maintainability standard.

Task 5.2 Implementing Web Client: Straightforward web development with authentication

and file upload functionality.

Task 5.3 Implementing Basic Desktop Client: Create an interface with a flow similar to

web client, with dummy advanced features.

Task 5.4 Linking Desktop Client with Advanced Features: Search and implement shell

functionalities for quarantining and deleting executables. Link static analysis functionality

with the application.

Deliverables

D5.1: Web Client Interface

D5.2: Desktop Client Interface

WP 6: Testing

Start date: November 14, 2022 End date: May 15, 2023

Leader: Selahattin Cem Öztürk Members involved: Arda Barış Örtlek

Yekta Seçkin Satır

Ali Emre Aydoğmuş

Selahattin Cem Öztürk

Onur Korkmaz

Objectives: In the last work package, implemented parts of the project will be tested.

Tasks:

Task 6.1 Testing the Accuracy Rate: Malware classifier will be tested to understand the

accuracy of the model.

Task 6.2 Server and Database Testing : Flow of information between the application, server

and the database will be tested.

Deliverables

D6.1: CleaverWall Desktop application.

D6.2: CleaverWall Web application.

28

3.4 Ensuring Proper Teamwork

We divide the project into work packages for which everybody in the group is
responsible. All of the team members are constantly in contact with each other to
pursue the process of the project. There is a Github repository for the codebase of
the project to which every team member has access. We are expecting everybody in
the group to contribute to this repository.

3.5 Ethics and Professional Responsibilities

● We will cite every academic paper and third party organizations that benefit us.
● We need to get user’s permission for adding the features of the executable to the

dataset.
● We will not share any data that is uploaded by any user.

3.6 Planning for New Knowledge and Learning Strategies

We are reading academic papers for improving our domain specific knowledge. As
we reference some of them in this report, there are a large number of papers that
we don’t reference but benefit from. Our learning strategies for implementation tools
are watching online tutorials and reading related articles. For the machine learning
side, we are following Andrew Ng’s Machine Learning and Deep Learning
Specialization courses. For the backend side, we utilize several Youtube tutorial
videos related to Django and Cuckoo Sandbox.

4 Glossary

Malware: Harmful software aiming to cause damage to computer systems.

Sandbox: Testing environment on which potentially harmful softwares can be run safely.

5 References

[1] M. Ahmadi, D. Ulyanov, S. Semenov, M. Trofimov, and G. Giacinto, “Novel feature
extraction, selection and fusion for effective malware family classification,” Proceedings of
the Sixth ACM Conference on Data and Application Security and Privacy, 2016.

[2] M. A. U. of Ballarat, M. Alazab, U. of Ballarat, U. of B. V. Profile, S. V. U. of Ballarat, S.
Venkatraman, P. W. U. of Ballarat, P. Watters, M. A. D. University, M. Alazab, D. University,
T. A. N. University, U. of Technology, and O. M. V. A. Metrics, “Zero-day malware detection
based on supervised learning algorithms of API call signatures: Proceedings of the ninth
Australasian Data Mining Conference - volume 121,” DL Hosted proceedings, 01-Dec-2011.
[Online]. Available: https://dl.acm.org/doi/10.5555/2483628.2483648. [Accessed:
16-Oct-2022].

[3] Capstone, “The ultimate disassembly framework,” Capstone, 08-May-2020. [Online].
Available: https://www.capstone-engine.org/. [Accessed: 16-Oct-2022].

[4] Erocarrera, “Erocarrera/pefile: Pefile is a python module to read and work with PE
(portable executable) files,” GitHub. [Online]. Available:
https://github.com/erocarrera/pefile. [Accessed: 16-Oct-2022].

[5] Karl-Bridge-Microsoft, “PE format - win32 apps,” Win32 apps | Microsoft Learn.
[Online]. Available: https://learn.microsoft.com/en-us/windows/win32/debug/pe-format.
[Accessed: 16-Oct-2022].

29

[6] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath, “Malware images,”
Proceedings of the 8th International Symposium on Visualization for Cyber Security -
VizSec '11, 2011.

[7] D. Gibert, C. Mateu, J. Planes, and R. Vicens, “Using convolutional neural networks for
classification of malware represented as images - journal of computer virology and hacking
techniques,” SpringerLink, 27-Aug-2018. [Online]. Available:
https://link.springer.com/article/10.1007/s11416-018-0323-0. [Accessed: 16-Oct-2022].

[8] M. Kalash, M. Rochan, N. Mohammed, N. D. Bruce, Y. Wang, and F. Iqbal, “Malware
classification with deep convolutional Neural Networks,” 2018 9th IFIP International
Conference on New Technologies, Mobility and Security (NTMS), 2018.

[9] “Grayscale images of malware samples belonging to different malware ...” [Online].
Available:
https://www.researchgate.net/figure/Grayscale-images-of-malware-samples-belonging-to-
different-malware-families-in-BIG-2015_fig3_358487073. [Accessed: 16-Oct-2022].

[10] D. Gibert, C. Mateu, and J. Planes, “Hydra: A multimodal deep learning framework for
malware classification,” Computers & Security, 12-May-2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167404820301462. [Accessed:
16-Oct-2022].

[11] T. G. Kim, B. J. Kang, M. Rho, S. Sezer, and E. G. Im, “A multimodal deep learning
method for Android malware detection using various features,” IEEE Transactions on
Information Forensics and Security, vol. 14, no. 3, pp. 773–788, 2019.

[12] Y. Ki, E. Kim, and H. K. Kim, “A novel approach to detect malware based on API call
sequence analysis,” International Journal of Distributed Sensor Networks, vol. 11, no. 6, p.
659101, 2015.

[13] “Automated malware analysis,” Cuckoo Sandbox - Automated Malware Analysis.
[Online]. Available: https://cuckoosandbox.org/. [Accessed: 16-Oct-2022].

[14] VirusShare.com. [Online]. Available: https://virusshare.com/. [Accessed:
16-Oct-2022].

[15] Virustotal. [Online]. Available: https://www.virustotal.com/gui/home/upload.
[Accessed: 16-Oct-2022].

[16] “Tensorflow,” TensorFlow. [Online]. Available: https://www.tensorflow.org/.
[Accessed: 16-Oct-2022].

[17] “Ransomware Statistics in 2022: From Random Barrages to Targeted Hits”, Ivana
Vojinovic, dataprot.net. [Online]. Available:
https://dataprot.net/statistics/ransomware-statistics/

[18] “Unpack.py: Script using WinAppDbg to automatically unpack malware,” Malware
Musings, 16-Sep-2014. [Online]. Available:
https://malwaremusings.com/scripts/unpack.py/. [Accessed: 13-Nov-2022].

30

